|
A mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique. The exact conservation law used in the analysis of the system depends on the context of the problem, but all revolve around mass conservation, i.e. that matter cannot disappear or be created spontaneously. Therefore, mass balances are used widely in engineering and environmental analyses. For example, mass balance theory is used to design chemical reactors, to analyse alternative processes to produce chemicals, as well as to model pollution dispersion and other processes of physical systems. Closely related and complementary analysis techniques include the population balance, energy balance and the somewhat more complex entropy balance. These techniques are required for thorough design and analysis of systems such as the refrigeration cycle. In environmental monitoring the term budget calculations is used to describe mass balance equations where they are used to evaluate the monitoring data (comparing input and output, etc.) In biology the dynamic energy budget theory for metabolic organisation makes explicit use of mass and energy balances. ==Introduction== The general form quoted for a mass balance is ''The mass that enters a system must, by conservation of mass, either leave the system or accumulate within the system ''. Mathematically the mass balance for a system without a chemical reaction is as follows:〔 Strictly speaking the above equation holds also for systems with chemical reactions if the terms in the balance equation are taken to refer to total mass, i.e. the sum of all the chemical species of the system. In the absence of a chemical reaction the amount of any chemical species flowing in and out will be the same; this gives rise to an equation for each species present in the system. However, if this is not the case then the mass balance equation must be amended to allow for the generation or depletion (consumption) of each chemical species. Some use one term in this equation to account for chemical reactions, which will be negative for depletion and positive for generation. However, the conventional form of this equation is written to account for both a positive generation term (i.e. product of reaction) and a negative consumption term (the reactants used to produce the products). Although overall one term will account for the total balance on the system, if this balance equation is to be applied to an individual species and then the entire process, both terms are necessary. This modified equation can be used not only for reactive systems, but for population balances such as arise in particle mechanics problems. The equation is given below; note that it simplifies to the earlier equation in the case that the generation term is zero.〔 *In the absence of a nuclear reaction the number of atoms flowing in and out must remain the same, even in the presence of a chemical reaction. *For a balance to be formed, the boundaries of the system must be clearly defined. *Mass balances can be taken over physical systems at multiple scales. *Mass balances can be simplified with the assumption of steady state, in which the accumulation term is zero. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Mass balance」の詳細全文を読む スポンサード リンク
|